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Abstract-An analytical model is presented to predict the influence of non-linearities associated
with fluid flow on the dynamic behaviour of a structure consisting of shells and a surrounding fluid
medium. The model requires the use of two linear operators to control the equilibrium of the shell
and the velocity potential. a linear boundary condition of impermeability and a non-linear dynamic
boundary condition. The method is based on thin shell theory and the non-rotational ftow of non­
viscous fluids. in combination with finite element analysis. It is applicable to non-uniform thin
anisotropic cylinders subjected to different boundary conditions. The displacement functions for
the wall and liquid column are derived from Sanders' equations and from the velocity field associated
with the column. respectively. The set of matrices describing their relative contributions to equi­
librium is determined by exact analytical integration. The coupled equations are solved for the non­
flow problem. For cases of fluid ftow. certain analytical modifications are proposed to restore the
situation to conventional mod;11 analysis. The non-linear equations of motion are solved by the
fourth-order Runge-KUlla numerical method. The frequency variations arc then determined with
respt.'Ct to the amplitude of the motion. The trends of the non-linearities arc of a softening type.

NOMENCLATURE

( I) Suhscript
f
in. out
(r.x.II), t

u
L,NL

(2) SUpt'rscript
o
(NL)
r
t

-I

(J) Variahles
a
C
E
I

J
J.
I
m
m.
N
n
p.P
R
R.v
r
t
U.V.W
ttl'
V,. V" Vo
x
y.
Zp.

SAS 28:9-A

Iluid
internal and externaillow
spatial coordin;lte and time, n:spcctivcly
shell
representing internal and external radius. as the case may be
linear and non-linear

diagonal matrix
non-linear
reduced matrix
transpost.'t.! matrix
inv.:rsed matrix

mean radius of shell
speed of sound in lhe fluid medium
Young's modulus
i' = -I
number of boundary conditions applied
Bessel function of the first kind of ord.:r n
finite element length
number of axial half-waves
defined by relation (10)
number of finite elements
number of circumferential modes
fluid pressure on wall
average radius of cylindrical shell
Reynolds number
radial coordinate
wall thickness
displacements: axial. tangential. radial
flow velocity
components of velocity field associated with the flow
cylinder generator coordinate
Bessel function of the 2nd kind of order n
defined by relation (12)
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non-dimensional vibration amplitude
structural slenderness
defined by relation (15)
velocity potential
complex root of characteristic equation
eigenvalue
linear differential operator
Poisson's ratio
density of liquid and solid, respectively
circumferential coordinate
angular velocity
defined by relation (50)

(4) Veclors and matrices
[mrJ inertia matrix for one finite element and defined by relation (16)
(m,) inertia matrix associated with the shell
(Crll' (CrlNl damping matrix eqns (17) and (23)
(Krll' (KrlNl stiffness matrix eqns (18) and (25)
(K,) stiffness matrix associated with the shell
(Kerl defined by eqn (24)
(Sri: defined by relation (19)
(DrIL. (DrlNl defined by relations (20). (26)
(Grll' (GrlNl defined by relations (21), (28)
(GDrlNl defined by relation (27)
{'d. {~} displacement vectors expressed as natural and generalized coordinates. respectively.

I. INTRODUCTION

This study presents a general approach to the non-linear analysis of thin cylindrical aniso­
tropic shells partially or completely filled with liquid under flow or no-flow conditions, The
method combines finite element analysis and classical thin shell theory. The finite element
chosen was cylindrical (Fig. I) and was bounded by two circular nodes. There were four
degrees of freedom at each node: axial. radial and circumferential displacement, and
rotation. The geometry of the finite element made it possible to use Sanders' (1959)
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Fig. I. Displacements and degrees of freedom at a node. (a) Cylindrical finite element in vacuo:
m.{C>·} +k.{c5l = {O}. (b) Cylindrical finite element with flowing fluid (internal and/or external flow):

eqn (30).
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equations of motion in their entirety to determine the displacement function. This method
not only avoids the disadvantages of the Rayleigh-Ritz method, but also satisfies the finite
dement method convergence criteria (Lakis and Paidoussis, 1972a) and shows greater
accuracy than the more usually chosen polynomial functions.

In the present research, we investigated the effect of non-Iinearities associated with
Bernoulli's equation on the natural frequencies of an interactive fluid-shell system. The
following experimental parameters were used in the analysis: circumferential mode, struc­
tural slenderness ratio, Reynolds number, vibration mode coupling and uncoupling and
the effect ofcomposite materials. We considered only the shell's breathing mode (i.e. where
the longitudinal axis of the shell remains immobile during structure excitation).

The analytical solution was reached in two stages:

(I) Using the linear strain-displacement and stress-strain relationships which were
inserted into Sanders' equation of equilibrium, we determined the displacement functions
by solving the linear equation system. We then determined the mass and stiffness matrices
for a finite element (Lakis and Paidoussis. 1972a) and assembled the matrices for the
complete shell.

(2) From our solution of the velocity potential equation we derived an expression of
non-linear pressure as a function of:

(a) the nodal displacement of the fluid element.
(b) the inertial, centrifugal and Coriolis forces.
(c) a combination of non-linear effects.

Through the usual finite element procedure, we obtained the linear mass, damping and
stiffness matrices for the fluid (Lakis, 1976b) as well as the non-linear fluid load matrices.

2. ASSUMPTIONS

In order to study the equilibrium of a cylindrical shell including the membrane and
bendi ng effects on the rcference surface. we used first-order Sanders' (1959) eq uations.
These equations arc based on Love's (1944) First Approximation and, unlike other for­
mulations. yield zero deformation for rigid-body motion.

The assumptions for the analysis were as follows:

-The shell is madc up of one or more layers of isotropic or orthotropic material.
-Displacements of the wall are sufficiently small to obtain geometric linearity.
-The tcrms for rotary inertia and shear deformation are neglected.
-Fluid characteristics: non-viscous

incompressible.
--Flow attributes: non-rotational

potential
frictionless.

-The constants for internal pressure and surge pressure are ignored.

3. METHOD

The linear structural and fluid-load matrices were constructed using the procedure
described in Lakis (1976b) and Lakis and Paidoussis (1972a). The non-linear fluid-load
matrices were determined by development of the second-order Bernoulli equation.

Through modal analysis we transformed our equation of motion according to the axes
of the natural coordinates. This analysis varies with the type of vibration encountered. A
standard procedure was used for undamped free vibrations. For damped free vibrations,
we propose a method in which all information contained in the eigenvalues is considered
and post-processing is carried out on the eigenvector matrix.

The coupled equations of motion were solved by means of the method used in Singh
el al. (1974).
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4. MATRIX CONSTRUCTION: NO FLUID

The complete development leading to the construction of the shell's linear structural
matrices is given in Lakis (1976b) and Lakis and Paidoussis (1972a).

5. ANALYTICAL FORMULAnON: WITH FLUID

5.1. Dynamic pressure
Taking a cylindrical shell with a vertical generator axis, we used the procedure outlined

in Section I within the constraints of the assumptions listed in Section 2. Thus, a suitable
potential function is inserted into the Eulerian equations for mass and momentum transport.
The appropriate energy expression for the system under consideration is a combination of
the first and second laws of thermodynamics, which for isentropic flow along a streamline
allows the introduction of the speed of sound for a barotropic fluid.

For ideal, frictionless flow, the velocity potential (Anderson, 1982) is governed by:

(I)

where C is the speed of sound in the fluid medium, cp the velocity potential and

The development of this third-order non-linear equation in cp is given in Appendix B­
I of Lakis and Laveau (1988).

The linear form of the relation in (I) is expressed by:

(2)

Furthermore, for steady flow, the velocity potential must satisfy the Laplace Equation.
This relation is expressed in the cylindrical coordinate system by:

,I CP.IIII
V·cp = - (rep,L +-,- + lp n'r ., r· ...

We define the velocity field associated with this flow by:

v, = cp"

(3)

(4)

where U
f

is the velocity associated with the flow rate by assuming the fluid to be inviscid.
A full definition of the flow requires that two conditions be applied to the shell-fluid

interface. The impermeability condition ensures contact between the shell surface and the
fluid. This should be:

(5)

Using eqns (1)-(5), we obtain the dynamic pressure as follows:

(6)
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where u subscript represents "internal" or "external" as the case may be :

ifu = i then e= tIj = a-t/2

ifu =e then e= tIc =a+tI2.
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The development for eqn (6) is given in Appendix B-2 of Lakis and Laveau (1988) [see
also Lakis (1976b)J.

The differential equation is solved using the method of separation of variables. The
form of the radial displacement and velocity potential (Lakis, 1976b) is:

8 8

fP = L fPk = L Rk(r)Sk (8, x, t)
k-l k_1

(7)

(8)

where A.k is the kth root of the characteristic equation and (I) the natural angular frequency.
Applying the impermeability condition, we determine Sk (B,x, t) explicitly. If we set

relations (2) and (3) as equal, we will obtain the ordinary homogeneous differential Bessel
equation:

(9)

where

(10)

We carry the Bessel equation solution back into (8) to obtain the final expression of
the velocity potential evaluated at the cylinder wall :

(11)

where

u=i

(12)

Substituting (II) into the non-linear boundary condition expression (6), we obtain the
equation for the pressure on the cylinder wall. It is useful to separate the total pressure into
its linear and non-linear terms:

where

P = {Pin -Pout}L + {Pin -Pout}NL

8

PuL = -Pfu L auZpu[W,.tt+2UxuW,,xt+U':uW,.xx],-1

(13)

(14)
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where

Pp = l-nZp"

fJq = l+nZq".

5.2. Linear matrices for the fluid column
We introduce the nodal interpolation functions for the fluid. which are compatible

with the functions for the shell, into the dynamic pressure expression in (14) and execute a
series of intermediate matrix operations made necessary by our choice of method. The
mass. damping and stiffness matrices for the fluid are obtained by evaluating the following
integral (Lakis. 1976b):

Finally. we have:

[mrl = [A, I]'[SrI[A, IJ

[cd = [A, 1)I[Dd[A, 'J

where

and p.lj = 1. ...• 8.
In eqns (19)-(21) we define the following non-dimensional quantities:

( 16)

(17)

(I X)

( 19)

(20)

(21)

.,,,,

where PI is the density. t the thickness of the first finite element of the shell, r the radius
and p( I, I. I) the first element of [P)

(22)
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5.3. Derelopment of the non-linear fluid-load matrices
We use the procedure outlined in the previous section. ignoring the cross products in

the non-linear dynamic pressure expression (15). We obtain the following matrices for the
non-linear effects:

where:

6.;n I
e - { 2 2 . 2] ] .~. J [Z 2[2 . 2] I]1Dr (p,q) = -~;-- D;y;Jp.,j[Z.,;[n +....., -I -V.I. pqe qe n +....., - f

Nl 61n

(23)

(24)

(25)

(26)

(27)

b,n 12 {.~ -2 .~ V-2 }- (e - I )A., V,V, 2 2 2 V.. 2 2 • 2
Gr (p.q) = . -.-J,,,,,[Z.,.[n +)..,]-I]-----Jpqe [Z,,.,[1I + .....,]-1]

NI 6111 y, Y.

(28)

where:

if ).p +2).., = O.

6. ANALYSIS OF FREE VIBRATIONS

(29)

6.1. Global matrices
The motion of a shell element interacting with a fluid column is governed by the

equations of motion in generalized coordinates:

[[m,] - [mrl]dJ'} - [crk {J} + [[k,] - [krlk {15} - [crlNd()2}

-[kcrlNd15J}-[krlNde5r = {O} (30)

where subscripts sand f refer to the shell in ramo and fluid-filled. respectively; {D} is the
degrees of freedom vector for the total nodes. m, and k, are. respectively. the mass and
stiffness matrices of the shell in vacllo and they are developed in Lakis and Paidoussis
(1972a). The total structure motion is governed by an analogous equation which we shall
write as:

[[Als]- [MF]k {X} - [CF]L {A} + [[Ks]- [KF]]L {t1} - [CF]NL {t1 2
}

-[KCF]Ndt1A}-[KF]Ndt12} = {O}. (31)

These global matrices are obtained by assembling the element matrices. Arter the
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boundary conditions are applied. these matrices are reduced to square matrices of order
4(N+ 1) -J where J is the number of restrictions imposed.

To abbreviate the expression. we set:

(32)

where r means reduced.
Let us set

(33)

where [ep] is the square eigenvector matrix in the symmetric linear matrix system. {td. :~r:
the displacement vectors expressed as natural and generalized coordinates. respectively.
and [ '] the ... matrix ... generalized coordinates.

We first substitute expression (33) into (32). then multiply (32) by [cp]' to obtain.
finally:

[MVj{tj)- - [Cll] :';: + [Kill] ~Il: - [lp'J[C:--lLJ[W'I :,;':

- [lp'J[KCNLJ[ep' I ~ 1;ld - [lp'J[K~LJ[IP 'I: tl'} = {O} (34)

where

[AlII] = [lp]'[M,J[(p]

[C Il
] = [lp]'[Cr][lp]

[K Il
] = [lp]'[K, j[lpl

where D stands for diagonal

[ III the ... matrix ... natural coordinates.

The matrices quantifying the Iluid column contribution to the matrix equations of
motion are non-symmetric. To f:lcilitate the analysis. therefore. we consider only the
symmetric portion of the matrices. We will see later that this simplification is justifIed.

6.2. No-jlolV condition
Under stagnant conditions, eqn (31) reduces to:

(35)

First we solve for the linear case to obtain the 4*(JV+ I) - J eigenvalues and eigen­
vectors. With this eigenvector matrix. we then develop the coupled equations of motion in
natural coordinates.

6.3. FloII' conditions
As mentioned in Section 3. we make some modifications to the procedure described

above.
Due to the presence of a non-proportional damper. we reduce the second-order linear

system to a first-order system. We again consider only the symmetric portions of the fluid
matrices. as given by the equation:

[M]{i;} + [Cj{,j} + [K]{q: = {OJ (36)
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which may be represented in the following form (Meirovitch. 1967):

[A]{y} + [B]{y} = {OJ

where:

[
0 [M]]

[A] = [M] [C]

[
-[M]

[B] = o

[{ '1]f .1 _ qf
\.If- {q} .

We assume the form of the homogeneous solution to be:

{y(t)} =el
, {t/J}.

Equation (36) becomes:

i.[AHt/J} = -[BHt/J}·

1087

(37)

(38)

(39)

From the solution of (39). we obtain a series of 211 eigenvalues and 2n eigenvectors.
For each given eigenvalue. ;.•. the corresponding eigenvectors arc developed as follows:

(40)

where N is the number of degrees of freedom.
The eigenvalues arc complex and always occur in conjugate pairs.
The dimensional incompatibility between the eigenvector matrices defined in (33) and

(40) <!Od the absence of any weighted orthogonal relationships between the (M]. [C] and
[K] matrices in (36) are ditliculties which have to be overcome.

We attempt to determine the n".- ('Ii and kji for each of the uncoupled equations of
motion. To this end we have two pieces of information on the state of the damped system
for each eigenvalue pair.

We have:

(41)

According to (38) and (41), we also have:

(42)

Now, for a damped system, the displacement is defined in Meirovitch (1967):

(43)

where Yo is the initial amplitude. ~ the critical damping coefficient. OJ. the natural angular
frequency and OJd the damped angular frequency.

We then, by analogy, associate the terms in eqns (42) and (43) to find our unknowns.
Finally, we obtain:

k•• = (IX; +p;)m•• (44)
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The m"" are taken from the orthogonal relation:

(45)

(46)

The first n diagonal terms of the resulting matrix are the n elements of diagonal [M].
The eigenvector matrix is constructed by selecting and assembling side-by-side the n

column vectors {qJ.v} in (40) associated with each pair of eigenvalues I. y • With this [qJ], we
then go on to couple the equations of motion in natural coordinates (34).

6.4. Soll'in9 the coupled equations
During the modal analysis, we have to consider coupling between the ditferent modes

since products of the form [qJj! [AI] [qJr do not generally give diagonal matrices.
A typical system equation, therefore, would be of the form:

NREDUC

Inllii,-C'i~,+kil'1i- L {C,AI~,+KCI,'1lti,+KI,r"n,} = O.
I - I

Let us set:

'1,(r) = A,j;(r)

which satisfies the initial conditions

J;(O) = I and ],(0) = 0

where A, is the vibration amplitude.
Equation (47), after simplifying by A, and dividing by In", bewlllcs:

where

(47)

(4R)

(49)

(50)

, kll ('II

wt =-----,
nl" r , 01"

KINL)t
n = -.. '1

I}

111"

whcre t is the shell thickness.
If, however, we ignore non-linear coupling bctwecn thc natural coordinates, eqn (50)

will take the form:

., I 2 (A i)r]2 J, n '21 - 0J,_··_j;+w,j;- - ·\f,i i+X"J,+ ,iJ,{- .
r, t

(51 )

The solution j;(r) of these ordinary non-linear differential equations which satisfies
the initial conditions (49) is approximated numerically by a fourth-order Runge-Kutta
calculation. The linear and non-linear natural angular frequencies are evaluated by a
systematic search for thej;(r) roots as a function of time. The UJNL/WL ratio is expressed as
a function of non-dimensional ratio A,t.
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7. CALCULATIONS AND DISCUSSION

In this section. we discuss the application of the proposed new method to a number
of cases. First. calculations were performed to demonstrate the validity of the simplifying
hypotheses we described in (50). Secondly, we conducted a systematic investigation into
the influence of the non-linearities associated with Bernoulli's equation by considering the
experimental parameters listed in Section 2. In conclusion, we briefly discuss the stability
problem inherent in the dynamic behaviour of the equation system studied.

Development of the analytical model required an additional hypothesis. Indeed, with
the present state of our knowledge. we are unable to apply the orthogonality properties of
the modal vectors to a general eigenvalue problem (Meirovitch, 1967; Wilkinson, 1965).
We are thus simplifying the parameters and limiting our dynamic analysis strictly to
consideration of those shell-fluid systems which lead to a symmetric matrix system of
eigenvalues.

This simplifying hypothesis is validated if the resultant eigenvalues come close to the
original system. Tables 1-4 of Lakis and Laveau (1988) show the variance between the
eigenvalues in the original and simplified systems, corresponding to cases of damped and
undamped free vibration. A trend was observed toward minimum variance at the extreme
modes and maximum variances (15% and 19.5% for a damped and an undamped case,
respectively) at the median modes. The simplification therefore seems to be valid since it
shows the two systems to have comparable dynamic behaviour.

We used four cylindrical shell models to investigate the inl1uence of a fluid medium.
These models arc presented in Table I.

The shell had the properties given in Obmztsova and Shklyarchuk (1979)

£ == 20685.0 MPa

v =0.29

R = 193.75mm

t == 1.29117 mm

P,hcll == 7812.5kgm- l

Pwalcr = 1000.Okgm- l

(steel)

R/t == 150.0

Pwatcr == 0.128.
P,hcll

The boundary conditions were for a shell simply-supported at both ends. such that
t' ::;: II' ::;: O.

The parameters of the investigation took the following values:

-n = 3 and 6 corresponding to the third and sixth circumferential vibration modes
-structural slenderness ratio L/R = 3 and 6
-Reynolds number. R",

\vherc

in which u't is the mean velocity of the external flow relative to the motion of the
solid. R is the average radius of the cylindrical shell and P and v are respectively the
density and viscosity of the fluid Rowing therein
R y = 0 (no-flow condition)
R y = 1.0E+06 and 2.0E+06.

The structural damping is neglected because it is much lower than the fluid damping.
For the no-flow condition. the dynamic behaviour is essentially undamped vibration. When
flow takes place. the fluid damping is dominant.

All the graphs illustrating our analysis may be found in Appendix C of Lakis and
Laveau (1988). A synopsis of their overall characteristics is given in Table I.
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Table I. Synoplic table. Influence of different experimental parameters on their relative contribution to variations in the frequency ratio. Natural angular frequency INt//L

Model Axial mode coupling Axial mode uncoupling

Experimental parameters Range of values Range of values

Reynolds 3rd 3rd ?'
L Young's number !"'L A axial J;'L A axial ?"

No. " R modulus R" Il I mode Il I mode r-
>-

1O'(u 10 14
X

Ox 10° 0.875(a 1.000 10-12·9 a.Soor'i; 1.000 10 ,(u!l0 " 9-7-10 Iii
3 6 £,,&«1 1 x 10" O.990\<! 1.000 1O'\ulOll 1-3-2 O.9)5(u11.000 IO''(u) 1027 1·)-7 '":::I2x 10" 0.997<il1.000 10 ' 'l" 10 23 1-)·2 0.950Cul l.000 IO"Ca"02" 1-)-7 p.

?'
6 6 £,....

Ox 10° O.9)5(ti 1.000 IO'CulO" 11·10-12 O.SooCai 1.000 1O~(a! 10 '7 12-10-11 r-2 } x 10" 0.992(4; 1.000 1O"(a 1022 }·)-7 0.925«['1.000 1O"(a) 101
" 1-)-7 >-

<:
s::'

Ox 10° O'X)(JI,' 1.(lOU 10"1" 10" 12·<)-7 O.l!OOr", I.OO() lO'IC"dO I ' 12-10·7 ~

3 ) 3 f ..\«l 1 x 10" O.lJ'Xl<!,1.000 102J<!IIOll 2-9-11 0.91O(,d.OOO IOI\aiIOH 2·\1-10

3 6 E-JIOO
Ox 10° 0.900@ 1.000 10'(/10 " 10-12-9 0.800«/11.000 lO'(a) lO" 9-7-10

4 I x 10" 0.998(" 1.000 10',,, 10" 1-3-2 O.900r", 1.000 IO~C(/!I011 1-)-2
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0.9750

...
~ 0.9500
z
:I

0.9250

0.9000

9

AJt

Fig. 2. Variations in frequency ratio as a function of motion amplitude. Model No.2. RN =0.0.
axial mode coupling.

It can be seen in Figs 2-5 that the variation in frequency ratio (wNdwd decreases with
increases in the non-dimensional amplitude ratio. There does, therefore, appear to be a
generalized non-linear trend of the softening type. In addition, the earliest occurrences of
sensitivity to this non-linearity are associated with a clustering of the first and last axial
modes for cases of damped and undamped vibration, respectively.

We shall now describe the parameter variables in terms of their relative impact on
frequency ratio variations. In all cases, uncoupling the equations of motion produces more
pronounced variation than coupling. Therefore the solution of the coupled equations
provides a better assessment of the relative weight of the effect analyzed. The variation is
low to moderate for no-flow and moderate to high for flowing fluid columns. In conclusion,
the following phenomena, in descending order of significance, had an impact on the other
parameters of our study: the circumferential vibration mode, composite material effect and
structural slenderness ratio.

A glance at the synopsis in Table I reveals the large amplitude required to obtain any
tangible effect. An amplitude of this magnitude corresponds to a pump discharge pulse or
"water hammer" effect!

It would be of interest nevertheless to explore the possible influence of the rigidity
(E = E"""J!IOO) further, since the order of magnitude for the non-dimensional amplitude

OOסס.1

0.9750

0.9500

... 0.9250
..@ 2...

0.9000z
:I 6

0.8500 4

0.8000

1013

AJt
Fig. 3. Variations in frequency ratio as a function of motion amplitude. Model No.2. RoY =0.0.

axial mode uncoupling.
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6 2
1.0000r--------"""'_:;;:---_;;:-l~:_:;:_~_:_:;:__:;:_--

~ 0.9975~

..::: I

f O."'Of
0.9925~

0.9900t'-::-:--_--JI'=__..J.I=-__....lI=-__....l!~---l.!---....! __----J!
10'5 10'6 10 '7 10'8 10'9 1020 102 ' 1022

Alt

Fig. 4, Variations in frequency ratio as a function of motion amplitude. Model No, ~. R, = 1.0 x 10'.
axial mode coupling.

ratio for that is the closest to unity. There are two other avenues of investigation which
hold out inviting prospects: the boundary condition and compressibility effects. The jet
engine nozzle, which is a clamped-free structure, is a particular structure that falls perfectly
into our analytical model. It is possible for coupling to occur between the modes associated
with floating instabilities, and the non-linearity can be studied when the Mach numher
tends toward 0.30.

Our investigation to date has thus confirmed the hypothesis that the inl1uence oj'
Bernoulli equation non-linearity on the dynamic behaviour of the shell·l1uid structure is
negligible.

We had somc difficulty in stabilizing the solution of the non-linear equations of motion
under one particular condition. This condition related to the magnitude of the contribution
by the non-linear effects to system inertia. Furthermore. damped structures present grcakr
numerical stability than undamped structures.

The instabilities were characterized either by oscillations of which the frequencies
varied substantially through time, or by an inconsistency between the frcqucncy and rate
of these oscillations around the balanced position. This occurred right from the initial pulse.

We adopted a convergence criterion which would keep us within the realm of stability.
The criterion involved ensuring that the solution would not repeat by considering a fre­
quency response acceptable if it fell within a band under I% of its nominal value.

0.9750

~ 0.9500z
3

0.9250

0.9000

1022

AJt

Fig. 5. Variations in frequency ratio as a function of motion amplitude. Model No.2. R, = 1.0 x 10'.
axial mode uncoupling.
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8. CONCLUSIONS

We developed a method based on Sanders' thin-shell equation. the equation for non­
rotational and frictionless fluid flow and on finite element analysis. The method predicts
the influence of non-linearity in association with flow definition on the dynamic behaviour
of vertical cylindrical shells partially or completely filled with a stagnant or flowing liquid.
Our model does not yet predict the dynamic behaviour of vessels partially filled with a
stagnant liquid. For this reason. we expect to incorporate the free shear boundary condition
and the sloshing effects in our next analysis.

The finite element was cylindrical and geometrically axisymmetric. The displacement
functions were therefore derived from the equations of motion for the shell. The mass
and stiffness matrices were determined by exact analytical integration. The displacement
functions for the fluid column were derived from the velocity field associated with the
column and from the non-linear impermeability and dynamic conditions applied to the
shell-fluid interface. The matrices for the fluid column contribution were determined in a
manner similar to the matrices for the shell wall. Conventional modal analysis was used to
treat a shell with undamped free vibrations and vibrations damped with a non-proportional
damper. This latter vibration case required both a simplifying hypothesis. which proved to
have been justified. and a few analytical modifications. The non-linear equations of motion
expressed in natural coordinates were solved using a numerical time-based integral method:
the fourth-order Runge-Kutta numerical method.

This area of investigation is still wide open and there is very little on the subject in the
literature. We are unable. therefore. to confirm whether, in the context of a dynamic
analysis. we are justified in completely neglecting the influence of the non-linear boundary
condition at the shell-fluid interface. The present theory was formulated and applied to
straight cylindrical shells with circular sections. It can, however. be used to analyze a shell
of revolution with arbitrary curvature by appropriate assembly of the cylindrical. conical
or spherical clements to approximate the geometry desired. It would be interesting to apply
the method developed to investigations of forced vibrations in a cylindrical shell subjected
to dynamic loads. It would also be interesting to include phenomena of flotation and
buckling instability in this analysis. In conclusion. the next logical step in the work of our
group would be the investigation of the effect of geometric non-linearities of the walls on
the dynamic behaviour of shell-fluid interaction.
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